MetaTrader 4 - Indikatorer Flyttmedelvärde, MA-indikator för MetaTrader 4 Den rörliga genomsnittliga tekniska indikatorn visar genomsnittligt instrumentprisvärde under en viss tidsperiod. När man beräknar glidande medelvärde, genomsnittar man instrumentpriset för denna tidsperiod. När priset ändras ökar eller förminskar dess rörliga genomsnitt. Det finns fyra olika typer av rörliga medelvärden: Enkel (även kallad aritmetisk), exponentiell, slät och linjär viktad. Flyttande medelvärden kan beräknas för varje sekventiell dataset, inklusive öppnings - och slutkurser, högsta och lägsta priser, handelsvolym eller andra indikatorer. Det är ofta fallet när dubbla rörliga medelvärden används. Det enda där glidande medelvärden av olika typer skiljer sig avsevärt från varandra är när viktkoefficienter, som tilldelas de senaste uppgifterna, skiljer sig åt. Om vi pratar om ett enkelt glidande medelvärde är alla priser för den aktuella tidsperioden lika i värde. Exponentiella och linjärt viktade rörliga medelvärden fäster mer värde till de senaste priserna. Det vanligaste sättet att tolka prisglidande genomsnittet är att jämföra sin dynamik med prisåtgärden. När instrumentpriset stiger över sitt glidande medelvärde visas en köpsignal, om priset faller under dess glidande medelvärde, har vi en säljsignal. Detta handelssystem, som är baserat på det rörliga genomsnittet, är inte utformat för att ge inträde till marknaden rätt i sin lägsta punkt och dess utgång höger på toppen. Det gör det möjligt att agera enligt följande trend: att köpa snart efter att priserna når botten och att sälja snart efter att priserna har nått sin topp. Enkelt rörligt medelvärde (SMA) Enkelt, med andra ord beräknas aritmetiskt rörligt medelvärde genom att summera priserna på instrumentlåsning under ett visst antal enskilda perioder (t ex 12 timmar). Detta värde divideras därefter med antalet sådana perioder. SMA SUM (CLOSE, N) N Där: N är antalet beräkningsperioder. Exponentiellt rörligt medelvärde (EMA) Exponentiellt glatt rörligt medelvärde beräknas genom att lägga det rörliga genomsnittet av en viss andel av nuvarande slutkurs till föregående värde. Med exponentiellt slätade glidande medelvärden är de senaste priserna mer värdefulla. P-procent exponentiell glidande medelvärde kommer att se ut: Var: CLOSE (i) priset för den aktuella periodens stängning EMA (i-1) Exponentiellt Flyttande Medel av föregående periodens stängning P Andelen av att använda prisvärdet. Smoothed Moving Average (SMMA) Det första värdet av detta slätade glidande medelvärde beräknas som det enkla glidande medelvärdet (SMA): SUM1 SUM (CLOSE, N) Det andra och efterföljande glidande medelvärdet beräknas enligt följande formel: Var: SUM1 är summa av slutkurs för N-perioder SMMA1 är det glattade glidande medlet för den första stapeln SMMA (i) är det glattade glidande medlet för den aktuella fältet (förutom den första) CLOSE (i) är den aktuella stängningskursen N är den utjämningsperiod. Linjärt viktat rörligt medelvärde (LWMA) Vid viktat glidande medelvärde är de senaste data mer värdefulla än tidigare tidiga data. Viktat glidande medelvärde beräknas genom att multiplicera var och en av slutkurserna inom den bedömda serien med en viss viktkoefficient. LWMA SUM (Stäng (i) I, N) SUM (I, N) Var: SUM (I, N) är summan av viktkoefficienter. Flyttande medelvärden kan också tillämpas på indikatorer. Det är här tolkningen av indikatorens glidande medelvärden liknar tolkningen av prisförskjutande medelvärden: om indikatorn stiger över dess glidande medelvärde betyder det att den stigande indikatorrörelsen sannolikt kommer att fortsätta: om indikatorn faller under dess glidande medelvärde innebär att det sannolikt fortsätter att gå nedåt. Här är typerna av glidande medelvärde på diagrammet: Flytta genomsnittligt (SMMA) Exponential Moving Average (EMA) Slät Flytande Medel (SMMA) Linjärt Vägt Flytande Medeltal (LWMA) Flyttande Medeltal Den Moving Average Technical Indicator visar medelvärdet för instrumentpriset för en viss tidsperiod. När man beräknar glidande medelvärde, genomsnittar man instrumentpriset för denna tidsperiod. När priset ändras ökar eller förminskar dess rörliga genomsnitt. Det finns fyra olika typer av glidande medelvärden: Enkel (även kallad aritmetisk), Exponentiell. Smoothed och Weighted. Flyttande medelvärde kan beräknas för varje sekventiell dataset, inklusive öppnings - och slutkurser, högsta och lägsta priser, handelsvolym eller andra indikatorer. Det är ofta fallet när dubbla rörliga medelvärden används. Det enda där glidande medelvärden av olika typer skiljer sig avsevärt från varandra är när viktkoefficienter, som tilldelas de senaste uppgifterna, skiljer sig åt. Om vi pratar om Simple Moving Average. Samtliga priser för den aktuella tidsperioden är lika med värdet. Exponentiell rörlig medelvärde och linjärt vägt rörande medelvärde bifogar mer värde till de senaste priserna. Det vanligaste sättet att tolka prisglidande genomsnittet är att jämföra sin dynamik med prisåtgärden. När instrumentpriset stiger över sitt glidande medelvärde visas en köpsignal, om priset sjunker under sitt glidande medelvärde, har vi en säljsignal. Detta handelssystem, som är baserat på det rörliga genomsnittet, är inte utformat för att ge inträde till marknaden rätt i sin lägsta punkt och dess utgång höger på toppen. Det gör det möjligt att agera enligt följande trend: att köpa snart efter att priserna når botten och att sälja snart efter att priserna har nått sin topp. Flyttande medelvärden kan också tillämpas på indikatorer. Det är här tolkningen av indikatorens glidande medelvärden liknar tolkningen av prisförskjutande medelvärden: om indikatorn stiger över dess glidande medelvärde betyder det att den stigande indikatorrörelsen sannolikt kommer att fortsätta: om indikatorn faller under dess glidande medelvärde innebär att det sannolikt fortsätter att gå nedåt. Här är typerna av glidande medelvärden på diagrammet: SMA (Medium Moving Average (SMA) Exponential Moving Average (EMA) Smoothed Moving Average (SMMA) Linjärt vägt rörligt medelvärde (LWMA) Du kan testa handelssignalerna för denna indikator genom att skapa en expertrådgivare i MQL5 Wizard. Beräkning Enkelt rörligt medelvärde (SMA) Enkelt, med andra ord beräknas aritmetiskt rörligt medelvärde genom att summera priserna på instrumentlåsning under ett visst antal enskilda perioder (t ex 12 timmar). Detta värde divideras därefter med antalet sådana perioder. SMA SUM (CLOSE (i), N) N SUM summa CLOSE (i) aktuell period nära pris N antal beräkningsperioder. Exponentiellt rörligt medelvärde (EMA) Exponentiellt glatt rörligt medelvärde beräknas genom att tillägga en viss andel av nuvarande slutkurs till föregående värde för glidande medelvärde. Med exponentiellt slätade glidande medelvärden är de senaste snabba priserna mer värdefulla. P-procent exponentiell glidande medelvärde kommer att se ut: EMA (CLOSE (i) P) (EMA (i - 1) (1 - P)) CLOSE (i) nuvarande period nära pris EMA (i - 1) av en föregående period P procentsatsen av att använda prisvärdet. Smoothed Moving Average (SMMA) Det första värdet av detta slätade glidande medelvärde beräknas som det enkla glidande medelvärdet (SMA): SUM1 SUM (CLOSE (i), N) Det andra glidande medlet beräknas enligt följande formel: SMMA (i) (SMMA1 (N-1) CLOSE (i)) N Lyckande glidande medelvärden beräknas enligt följande formel: PREVSUM SMMA (i - 1) N SMMA (i) (PREVSUM - SMMA (i - 1) CLOSE (i)) N SUM summan SUM1 Summa summan av slutkurserna för N perioder räknas den från föregående stapel PREVSUM glatt summa av föregående stapel SMMA (i-1) glatt glidande medelvärde för föregående stapel SMMA (i) glatt glidande medelvärde för nuvarande stapel (förutom den första) CLOSE (i) nuvarande slutpris N utjämningsperiod. Efter aritmetiska omvandlingar kan formeln förenklas: SMMA (i) (SMMA (i - 1) (N - 1) CLOSE (i)) N Linjärt Vägt Flytande Medelvärde (LWMA) Vid viktat glidande medelvärde är de senaste data av mer värde än mer tidiga data. Viktat glidande medelvärde beräknas genom att multiplicera var och en av slutkurserna inom den angivna serien med en viss viktkoefficient: LWMA SUM (CLOSE (i) I, N) SUM (I, N) SUM Summa CLOSE (i) Nuvarande nära pris SUM (I, N) Total summa av viktkoefficienter N utjämningsperiod. Jag skulle kunna föreställa mig att det skulle ha något att göra med att skriva om en egen MA-indikator som tittar på genomsnittsvärdena för indikatorn du vill ha. Skulle egentligen bara vara ett fall att ersätta prisvärdena i den nuvarande MA-indikatorn med iStochastic-värden så kan du bara använda iCustom () för att ringa in den anpassade indikatorn. Jag tror. Heres den enkla glidande medelkoden från MA-indikatorn som följer med MT4, borde bara vara ett fall att ersätta Closepos med iStochastic (.pos) värden jag tror tomt sma () dubbel summa int jag, posBars-ExtCountedBars-1 --- - initial ackumulering om (posltMAPeriod) posMAPeriod för (i1iltMAPeriodi, pos--) sumClosepos ---- huvudkalkylslingan medan (posgt0) sumClosepos ExtMapBufferpossumMAPeriod summa-CloseposMAPeriod-1 pos-- ---- noll första staplar om (ExtCountedBarslt1) för (i1iltMAPeriodi) ExtMapBufferBars-i0 Jag skulle tro att det skulle ha något att göra med att skriva om en anpassad MA-indikator som tittar på genomsnittsvärdena för indikatorn du vill ha. Skulle egentligen bara vara ett fall att ersätta prisvärdena i den nuvarande MA-indikatorn med iStochastic-värden så kan du bara använda iCustom () för att ringa in den anpassade indikatorn. Jag tror. Heres den enkla glidande medelkoden från MA-indikatorn som följer med MT4, borde bara vara ett fall att ersätta Closepos med iStochastic (.pos) värden jag tror tomt sma () dubbel summa int jag, posBars-ExtCountedBars-1 --- - initial ackumulering om (posltMAPeriod) posMAPeriod för (i1iltMAPeriodi, pos--) sumClosepos ---- huvudkalkylslingan medan (posgt0) sumClosepos ExtMapBufferpossumMAPeriod summa-CloseposMAPeriod-1 pos-- ---- noll första staplar om (ExtCountedBarslt1) för (i1iltMAPeriodi) ExtMapBufferBars-i0 Tack för din hjälp, mrwobbles, men det hjälpte mig inte än. Föreställ dig att jag bara vill beräkna det glidande genomsnittet av x perioder på volymer, har du koden för denna Ive gjort en enkel MA i volymen, om du tittar på den Moving Average-indikator som följer med MT4 kan du se vad jag har gjort . Det är ganska enkelt. Problemet med den stokastiska MA är att stokastiken returnerar positiva och negativa värden så att beloppen inte är korrekta.
No comments:
Post a Comment